THE ORIENTED BORDISM OF Z_{2k} ACTIONS

BY

E. R. WHEELER

ABSTRACT. Let R_2 be the subring of the rationals given by $R_2 = Z[\%]$. It is shown that for $G = Z_{2k}$ the bordism group of orientation preserving G actions on oriented manifolds tensored with R_2 is a free $\Omega_* \otimes R_2$ module on even dimensional generators (where Ω_* is the oriented bordism ring).

- 1. Introduction. Let G be a group. Let Ω_*^G denote the bordism group of differentiable orientation preserving G actions on closed oriented manifolds. In R. E. Stong's paper [10] Ω_*^G is understood for G a p-group and p an odd prime. In [9] H. L. Rosenzweig shows that $\Omega_*^{Z_2} \otimes Q = 0$ if $* \neq 4k$. In this paper the module structure of Ω_*^G is determined up to 2-torsion for $G = Z_{2k}$.
- §§ 2, 3, and 4 are largely preliminary material. In §5 it is shown that $\Omega_*^{Z_2 k} \otimes R_2$ is a free $\Omega_* \otimes R_2$ module on even dimensional generators (where $R_n = \{a/b \mid a \text{ is an integer and } b \text{ is a power of } n\}$ is a subring of the rationals).

This paper discusses part of the research undertaken while I was a Ph. D. candidate at the University of Virginia. I would like to express my appreciation to my advisor, R. E. Stong, who directed this research in a most generous way.

2. Equivariant bordism. For a finite abelian group G a family F'' of subgroups of G is a collection of subgroups of G such that if $H \in F''$ and K < H, then $K \in F''$. If (M, σ) is a manifold with G action, then (M, σ) is F''-free if for each $x \in M$, the isotropy subgroup of x is an element of F''.

Let $F' \subset F''$ be families of subgroups of G. Let (X, A) be a space pair with G action. Consider 5-tuples (M, M_0, M_1, σ, f) where

- (1) M, M_0, M_1 are compact differentiable oriented manifolds with n the dimension of M.
 - (2) $\partial M = M_0 \cup M_1$, $\partial M_0 = \partial M_1 = M_0 \cap M_1$.
- (3) $\sigma: G \times M \to M$ is a differentiable G-action which preserves M_0 and M_1 and which preserves the orientation on M.
 - (4) (M, σ) is F"-free while $(M_0, \sigma/G \times M_0)$ is F'-free.
 - (5) $f: (M, M_1) \rightarrow (X, A)$ is an equivariant map.

Received by the editors June 27, 1973 and, in revised form, November 5, 1973. AMS (MOS) subject classifications (1970). Primary 57D85.

 $\textit{Key words and phrases.} \;\;\; \text{Equivariant bordism, orientation preserving group action.}$

Under the usual equivariant bordism relation (see [10, §2]) one forms a set of equivalence classes of such 5-tuples, denoted $\Omega_n^G(F'', F')(X, A)$, with an abelian group structure induced by disjoint union. The graded sum of these groups has an Ω_* module structure induced by cartesian product and is denoted by $\Omega_*^G(F'', F')(X, A)$.

Now if $h: (X, A) \to (Y, B)$ is an equivariant map between spaces with G action, one has an induced homomorphism $h_*: \Omega^G_*(F'', F')(X, A) \to \Omega^G_*(F'', F')(Y, B)$ sending $[M, M_0, M_1, \sigma, f]$ into $[M, M_0, M_1, \sigma, h \circ f]$. Let \emptyset denote the empty set. Then there is a degree -1 boundary map $\partial_*: \Omega^G_*(F'', F')(X, A) \to \Omega^G_*(F'', F')(A, \emptyset) \equiv \Omega^G_*(F'', F')(A)$ sending $[M, M_0, M_1, \sigma, f]$ into $[M_1, \partial M_1, \emptyset, \sigma/G \times M_1, f/M_1]$. From [10, Proposition 2.1], $\Omega^G_*(F'', F')(-)$ and ∂_* define an equivariant homology theory on the category of G-pairs to the category of Ω_* modules. Specifically this theory satisfies equivariant homotopy, excision, and exactness axioms.

From [10, Proposition 2.2], one knows that for families of subgroups $F' \subset F''$ there is an exact triangle

$$\Omega_*^G(\mathsf{F}')(X,A) \xrightarrow{\alpha_*} \Omega_*^G(\mathsf{F}'')(X,A)$$

$$0_*' \qquad \qquad \beta_*$$

$$\Omega_*^G(\mathsf{F}'',\mathsf{F}')(X,A)$$

in which a_* and β_* , respectively, forget F' and F''-freeness while δ'_* sends $[M, M_0, M_1, \sigma, f]$ into $[M_0, \varnothing, \partial M_0, \sigma/G \times M_0, f/M_0]$.

Note. If G is an abelian group and H < G, the collection of all subgroups of H is a family of subgroups of G. If $H \leq G$, this family is denoted by F_H . In particular F_e denotes the family consisting of the identity subgroup. Let F denote the family of all subgroups of G.

3. Classifying spaces for bundles with G action. Let G be a finite abelian group with exactly r distinct irreducible complex representations. Let $C^{\infty} = C_1^{\infty} \oplus C_2^{\infty} \oplus \cdots \oplus C_r^{\infty}$. Define a G action on G by considering G_i^{∞} as a countable direct sum of the ith irreducible representation. Now let BU_s be the Grassmannian of complex s-planes in G and G be the universal complex g-plane bundle over g since the elements of G act on G via complex linear transformations, there is an induced G action on g so g so g (see [10, §3]). One learns from Atiyah [2, §1.6] that g so g is the universal complex g n-plane bundle in the category of G-spaces.

One can perform essentially the same construction in the real case by taking the Grassmannian of real n-planes in C^{∞} . In this way one gets BO_s together with its canonical bundle γ_s , the universal real s-plane bundle in the category of G-spaces. Note that in what follows these G-spaces are called BU_s and BO_s

except in cases where the context does not make the meaning clear. In these cases the notation (BU_s, G) and (BO_s, G) is used.

In the process of defining BU_s and BO_s together with their canonical bundles one may place a metric on the γ_s such that the G action is orthogonal with respect to this metric. Further, for any G-bundle $E \to X$ of dimension s over a compact Hausdorff space X, one may assume there is a metric on E such that

- (a) the G action on E is orthogonal with respect to this metric,
- (b) the bundle map covering the classifying map takes

$$(D(E), S(E)) \rightarrow (D(\gamma_s), S(\gamma_s))$$

where D(-) denotes the unit disc bundle and S(-) denotes the unit sphere bundle.

Now consider the G-spaces BO_s and BU_s and the fixed sets of subgroups of G acting on BO_s and BU_s . Let H < G and X be a compact Hausdorff G-space. The isomorphism classes of G-bundles over X of real dimension s, $\text{vect}_s^G(X)$, are in 1-1 correspondence with the G-homotopy classes of equivariant maps from X into BO_s , $[X, BO_s]_G$. Now if H < G fixes X, any equivariant map $X \to BO_s$ goes into the fixed set of H acting on BO_s , $F_H(BO_s)$. Hence if H fixes X, $\text{vect}_s^G(X) \leftrightarrow [X, F_H(BO_s)]_G$. It follows that $F_H(BO_s)$ is the classifying space of G bundles of dimension s over base spaces X such that H fixes X. Exactly the same analysis is true for complex s-bundles over X and $F_H(BU_s)$.

Further, if $E \to X$ is a complex G bundle and H < G fixes X, E splits into G subbundles according to the nontrivial irreducible complex representations of H [2, §1.6]. The classifying space for G-bundles over a base which H fixes can be understood in terms of these subbundles. Using this information one can compute explicitly the fixed sets $F_H(BU_s)$. Using similar techniques one can understand $F_H(BO_s)$. In particular, for the purposes of this paper one records the following computations.

PROPOSITION 3.1. If H < G with $d = the order of H, then <math>F_H(BU_s, G)$ is G homotopy equivalent to $\bigcup BU_{t_1} \times \cdots \times BU_{t_d}$ where Σ $t_i = s$. \square

Since the real irreducible representations of Z_2 are multiplication by +1 and by -1 on one-dimensional vector spaces, a Z_{2k} bundle E over a Z_{2k} space which is fixed by Z_2 decomposes into $E_1 \oplus E_{-1}$ where Z_2 acts in the fibers of E_i by multiplication by i. Thus the classifying space for s-dimensional real vector bundles over Z_{2k} spaces fixed by Z_2 is $\bigcup BO_{t_1} \times BO_{t_{-1}}$ where $t_{-1} + t_1 = s$. Thus

Proposition 3.2. $F_{Z_2}(BO_s,Z_{2^k})$ is Z_{2^k} homotopy equivalent to $\bigcup BO_{t-1} \times BO_{t_1}$. \square

It is evident that the component of $F_{Z_2}(BO_s,Z_{2^k})$ above which Z_2 acts as -1 in the fibers of the canonical bundle is a BO_s . Denote this component by $F_{Z_2}^-(BO_s,Z_{2^k})$. The Z_{2^k} action restricted to $F_{Z_2}(BO_s,Z_{2^k})$ can be considered a $Z_{2^{k-1}}$ action. If k>1 it is necessary to know the fixed set of Z_{2^j} $< Z_{2^{k-1}}$ acting on $F_{Z_2}^-(BO_s,Z_{2^k})$. $F_{Z_{2^j}}[F_{Z_2}^-(BO_s,Z_{2^k})]$ is the classifying space for Z_{2^k} bundles $E \to X$ which have the properties

- (a) $Z_{2j+1} < Z_{2k}$ fixes X.
- (b) $Z_2 < Z_{2j+1} < Z_{2k}$ acts on the fibers of E as multiplication by -1. For such a bundle E splits into subbundles with respect to the irreducible representations of Z_{2j+1} . Since each irreducible representation of Z_{2j+1} which satisfies (b) is the realification of an irreducible complex representation, each of the subbundles of E has a complex structure. Thus if there are r irreducible real representations of Z_{2j+1} satisfying (b) one has

PROPOSITION 3.3. $F_{Z_2j}[F_{Z_2}^-(BO_s,Z_{2^k})]$ is $Z_{2^{k-1}}$ homotopy equivalent to $\bigcup BU_{t_1} \times \cdots \times BU_{t_r}$ with Σ $t_i = s$. \square

4. A special case of equivariant transverse regularity. Let γ_{2s} represent the canonical 2s plane bundle over $F_{Z_2}^-(BO_{2s},Z_{2k})$. (Note that (BO_{2s},Z_{2k-1}) is Z_{2k-1} homotopy equivalent to $F_{Z_2}^-(BO_{2s},Z_{2k})$.) Since $Z_2 < Z_{2k}$ acts as multiplication by -1 in the fibers of γ_{2s} and since the determinant of -1 acting on an even dimensional vector space is +1, the Z_2 action dies when one takes the determinant bundle of γ_{2s} together with its induced action. In other words, det $\gamma_{2s} \to F_{Z_2}^-(BO_{2s},Z_{2k})$ is a Z_{2k-1} bundle.

Proposition 4.1. If

$$f: (M, \partial M, Z_{2^{k-1}} \ action) \rightarrow (D(\det \gamma_{2s}), S(\det \gamma_{2s}), \det(Z_{2^k} \ action))$$

is an equivariant map, then f may be equivariantly homotoped to be transverse regular on the zero section of $\det \gamma_{2s}$. Further, if $A \subset M$ is a closed subspace and if f/A is already transverse regular, the homotopy can be chosen to fix A.

PROOF. One needs only to check that the hypotheses for Lemma 4.2 in [10] are satisfied. Therefore one looks at the fixed set of $Z_{2j} < Z_{2k-1}$ acting on $F_{Z_2}^-(BO_{2s}, Z_{2k})$ for all $1 \le j \le k-1$, and one checks that if $x \in BO_{2s}$ is fixed by Z_{2j} , then v is fixed by Z_{2j} for all $v \in \det \gamma_{2s}/x$.

If T is the generator of Z_{2j+1} acting on γ_{2s} , T acts as a real linear transformation on γ_{2s}/x such that T^{2j} acts as multiplication by -1. Further, the minimum polynomial of T, m_T , must divide $y^{2j+1}-1=(y-1)\cdot (y+1)\cdot q_1(y)\cdot \cdots \cdot q_{2j-1}(y)$ where $q_i(y)$ is an irreducible quadratic of the form

 $y^2 + ay + 1$. y - 1 does not divide m_T since this would imply that T is multiplication by 1 on some one-dimensional subspace of γ_{2s}/x . Elementary linear algebra then yields that det T = +1 which implies that det T fixes pointwise the fiber det γ_{2s}/x . \square

5. The oriented bordism of Z_{2^k} . For a group G, denote by Ω^G_* the equivariant bordism module $\Omega^G_*(F)(pt)$. In this section $\Omega^{Z_{2^k}}_* \otimes R_2$ is computed. Let (X,A) be a c.w. pair with Z_{2^k} action having the property that $F_{Z_{2^j}}(X,A)$ is a c.w. pair for $0 \le j \le k$ where $F_{Z_{2^j}}(X,A)$ is the fixed set of Z_{2^j} acting on (X,A). For a bundle E with unit disc, D(E), and unit sphere, S(E), one denotes by T(E) the space D(E)/S(E), the Thom space of E. The primary tool of this paper is the following theorem.

Theorem 5.1.
$$\Omega_*^{Z_2 k}(F, F_e)(X, A)$$
 is isomorphic to
$$\bigoplus_{s=0}^{\lfloor */2 \rfloor} \widetilde{\Omega}_{*-2s+1}^{Z_2 k-1}(F)(F_{Z_2}(X)/F_{Z_2}(A) \wedge T(\det \gamma_{2s}))$$

where γ_{2s} is the canonical 2s plane bundle over $F_{Z_2}^-(BO_{2s}, Z_{2k})$.

PROOF. Let $[M, M_0, M_1, T, f] \in \Omega^{Z_2k}_*(F, F_e)(X, A)$ where T generates the Z_{2k} action on M. Let F_2 be the (n-s)-dimensional component of the fixed set of $Z_2 < Z_{2k}$ acting on M. Then F_2 is a submanifold of M with an induced action of Z_{2k-1} which is covered in the normal bundle to F_2 in M, ν , by an action of Z_{2k} . Further, $\partial F_2 = F_2 \cap M_1$. Since one may identify the disc of the normal bundle equivariantly with a small tubular neighborhood of F_2 , one knows that no elements of the disc of the normal bundle - {zero section} can be fixed by Z_{2j} for $1 \le j \le k$. Since each fiber of ν is a representation space for Z_2 , ν is a Z_{2k} bundle over F_2 such that Z_2 acts as -1 in the fibers. One then knows that $\nu \to F_2$ is classified equivariantly into $F_{Z_2}^-(BO_{2s}, Z_{2k})$ yielding a Z_{2k} bundle map

$$\begin{array}{ccc}
\nu & \xrightarrow{g'} & \gamma_{2s} \\
\downarrow & & \downarrow \\
F_2 & \xrightarrow{g} & BO_{2s}
\end{array}$$

By taking the determinant bundles of ν and γ_{2s} one gets a similar diagram of Z_{2k-1} bundle maps.

One may assume that det g' maps the (D, S) pair of det ν into the (D, S) pair of det γ_{2s} . Letting $\widetilde{\pi}$: det $\nu \to F_2$ be the projection, and crossing det g' with $f \circ \widetilde{\pi}$, one gets a map from the pair

$$(D(\det \nu), D(\det \nu/\partial F_2) \cup S(\det \nu))$$

$$(F_{Z_2}(X,A)\times (D(\det\gamma_{2s}),S(\det\gamma_{2s}))).$$

Since the first Stiefel-Whitney classes of ν and the tangent bundle of F_2 , $\tau(F_2)$, are equal, $D(\det \nu)$ is an oriented manifold. Let T' generate the Z_{2k-1} action on $D(\det \nu)$. One notes that T' is orientation preserving if $\det(dT') = T' \times 1$ on $\det \tau(D(\det \nu))$ [6, Lemma 3]. Since $\det dT' = \widetilde{\pi}^*(\det dT)$ on $\widetilde{\pi}^*(\det \tau(M)/F_2) \cong \det \tau(D(\det \nu))$ it follows that T' is orientation preserving since T is orientation preserving. Thus by summing over the discs of the determinant bundles of all possible components of the fixed set of Z_2 , one may define a map

$$F: \Omega^{\mathbb{Z}_{2}^{k}}_{*}(\mathbb{F}, \mathbb{F}_{e})(X, A)$$

$$\to \bigoplus_{s=0}^{\lceil */2 \rceil} \Omega^{\mathbb{Z}_{2}^{k-1}}_{*-2s+1} (\mathbb{F})(F_{\mathbb{Z}_{2}}(X, A) \times (D(\det \gamma_{2s}), S(\det \gamma_{2s}))).$$

In order to define an inverse to F consider

$$[N, \partial N, S, h] \in \Omega_*^{\mathbb{Z}_2^{k-1}}(F)(F_{\mathbb{Z}_2}(X, A) \times (D(\det \gamma_{2s}), S(\det \gamma_{2s}))).$$

One has $N \xrightarrow{p_2 \circ h} D(\det \gamma_{2s})$ and $p_2 \circ h$ is an equivariant map which, by Proposition 4.1, may be considered to be transverse regular on the zero section, BO_{2s} , of $\det(\gamma_{2s})$. Let $N' = (p_2 \circ h)^{-1}(BO_{2s})$. Since γ_{2s} has a Z_{2k} action covering the Z_{2k-1} action on BO_{2s} , $(p_2 \circ h)^*(\gamma_{2s}) \xrightarrow{\pi'} N'$ is a bundle with an induced Z_{2k} action such that $Z_2 < Z_{2k}$ acts as -1 in the fibers. Let S' generate the Z_{2k} action on $(p_2 \circ h)^*(\gamma_{2s})$. $D((p_2 \circ h)^*(\gamma_{2s}))$ is oriented and one checks that $\det dS'$ acts as $S' \times 1$ on the determinant of the tangent bundle. Hence S' is orientation preserving by [6, Lemma 3]. Hence by mapping $[N, \partial N, S, h]$ into

$$[D((p_2 \circ h)^*(\gamma_{2s})), S(p_2 \circ h)^*(\gamma_{2s}), D((p_2 \circ h)^*(\gamma_{2s})/\partial N'), S', p_1 \circ h \circ \pi']$$
 one defines a map K from

$$\Omega_*^{Z_2k-1}(F)(F_{Z_2}(X,A)\times (D(\det\gamma_{2s}),S(\det\gamma_{2s})))$$
 into $\Omega_{*+2s-1}^{Z_2k}(F,F_e)(X,A).$

To see that $F \circ K = \text{id}$ one notes that $D[\det(p_2 \circ h)^*(\gamma_{2s})]$ may be regarded as a tubular neighborhood of N' in N. By a deformation one may assume that $p_2 \circ h$ maps

$${N - [D(\det(p_2 \circ h) * (\gamma_{2s})) - S(\det(p_2 \circ h) * (\gamma_{2s}))]}$$

into $S(\det \gamma_{2s})$. Let π'' be the bundle projection, π'' : $(p_2 \circ h)^*(\det \gamma_{2s}) \to N'$. Since N' is a strong equivariant homotopy retract of its tubular neighborhood, there is an equivariant homotopy $J: N \times I \to F_{Z_2}(X)$ giving a homotopy

between $p_1 \circ h$ and J_1 where J_1 has the property that J_1 on $D((p_2 \circ h)^*(\det \gamma_{2s}))$ is given by $(p_1 \circ h/N') \circ \pi''$. It follows that

$$\{N \times I, \ \partial N \times I \cup N \times 1 - \text{int } D((p_2 \circ h)^*(\text{det } \gamma_{2s})), S \times 1, (J \times (p_2 \circ h)) \times 1\}$$

gives a bordism between $[N, \partial N, S, h]$ and $F \circ K([N, \partial N, S, h])$.

To see that $K \circ F = \operatorname{id}$ it suffices to observe that F_2 is a strong equivariant retract of its tubular neighborhood, D(v), and hence one may suppose f is homotopic to a map H such that $H/D(v) = f/F_2 \circ \pi$. Now $K \circ F$ is obtained by restricting to D(v). Since Z_{2k} acts freely in the complement of F_2 , $[M, M_0, M_1, T, f] = K \circ F([M, M_0, M_1, T, f])$. \square

Now suppose (X, A) is a c.w. pair acted on by $G = Z_{2k}$. Let q denote the quotient map onto the space pair (X/G, A/G) obtained by identifying the orbits of the G action. It is a well-known fact that $q^* \colon H^*(X/G, A/G; R_2) \to H^*(X, A; R_2)$ is a monomorphism onto the elements of $H^*(X, A; R_2)$ which are invariant under the G action (see [5, Corollary 2.3]). This fact together with the appropriate universal coefficient theorem indicates that if $H_*(X, A; R_2)$ is a free R_2 module on even [odd] dimensional generators, then $H_*(X/G, A/G; R_2)$ is a free R_2 module on even [odd] dimensional generators.

In light of this fact one defines a space pair (X,A) to be (2-even) [(2-odd)] if and only if $H_*(X,A;R_2)$ is a free R_2 module on even [odd] dimensional generators.

LEMMA 5.2. Let $G=Z_{2k}$. If (X,A) is a G pair and if (X,A) is (2-even) [(2-odd)], then $\Omega_*^G(\mathcal{F}_e)(X,A)\otimes R_2$ is a free $\Omega_*\otimes_* R_2$ module on even [odd] dimensional generators.

PROOF. From Proposition 2.3 in [10] one learns that $\Omega^G_*(F_e)(X,A) \cong \Omega_*(X \times_G EG, A \times_G EG)$ where EG is the total space of the universal principal G bundle. From the discussion preceding this lemma one learns that $(X \times_G EG, A \times_G EG)$ is (2-even) [(2-odd)]. As in [11, p. 145] one can show that if (X,A) is a c.w. pair such that $H_*(X,A;R_2)$ is a torsion free R_2 module, then

$$\Omega_*(X,A) \otimes R_2 \cong (\Omega_* \otimes R_2) \otimes_{R_2} H_*(X,A;R_2).$$

This yields the desired result. \square

Thus it is of interest to examine the homology of the spaces introduced in Theorem 5.1. From the homology exact sequence of the cofibration $S(\det \gamma_{2s}) \to D(\det \gamma_{2s}) \to T(\det \gamma_{2s})$ in which BSO_{2s} is homotopy equivalent to $S(\det \gamma_{2s})$ and BO_{2s} is homotopy equivalent to $D(\det \gamma_{2s})$ one learns that $T(\det \gamma_{2s})$ is (2-odd). From the proof of Proposition 4.1 one knows that for $Z_{2i} < Z_{2k-1}$,

$$F_{Z_{2^j}}(T(\det\,\gamma_{2s})) = T(\det\,\gamma_{2s}/F_{Z_{2^j}}[F_{Z_2}^-(BO_{2s},\,Z_2k)]\,).$$

If $E \to X$ is an oriented bundle, det E is a trivial line bundle and thus $T(\det E) = \sum X^+$ where Σ denotes reduced suspension. Now by Proposition 3.3, $F_{Z_{2j}}[F_{Z_2}^-(BO_{2s},Z_{2k})]$ is homotopic to $\bigcup BU_{(t)}$ where (t) is a q-tuple of nonnegative integers (t_1,t_2,\cdots,t_q) and $BU_{(t)}=BU_{t_1}\times BU_{t_2}\times\cdots\times BU_{t_q}$. Since $\gamma_{2s}/BU_{(t)}$ is complex, det $\gamma_{2s}/BU_{(t)}$ is trivial and $T(\det\gamma_{2s}/\bigcup BU_{(t)})=\bigvee \Sigma BU_{(t)}^+$. It follows that $F_{Z_{2j}}(T(\det\gamma_{2s}))$ is (2-odd) for $0\leqslant j\leqslant k-1$. Now from the appropriate cofibrations $X\vee Y\to X\times Y\to X\wedge Y$ one reads off the result:

LEMMA 5.3. If $F_{Z_{2j}}(X,A)$ is (2-even) [(2-odd)] for $0 \le j \le k$ and if $Y = F_{Z_{2}}(X)/F_{Z_{2}}(A) \wedge T(\det \gamma_{2s})$, then Y is a space with Z_{2k-1} action such that $F_{Z_{2j}}(Y)$ is (2-odd) [(2-even)] for $0 \le j \le k-1$. \square

This brings one finally to the computations.

THEOREM 5.4. If $F_{Z_2j}(X,A)$ is (2-even) [(2-odd)] for $0 \le j \le k$, then $\Omega_*^{Z_2k}(F)(X,A) \otimes R_2$ is a free $\Omega_* \otimes R_2$ module on even [odd] dimensional generators.

PROOF. If k=0 then both the even and the [odd] case follow from Lemma 5.2. Assume that the theorem is true for k' < k. Let (X,A) have a Z_{2k} action satisfying the hypotheses. By Lemma 5.2, $\Omega_*^{Z_2k}(F_e)(X,A) \otimes R_2$ is a free $\Omega_* \otimes R_2$ module on even [odd] dimensional generators. Theorem 5.1 yields that

$$\Omega_*^{Z_2^k}(F, F_e)(X, A) \cong \bigoplus \widetilde{\Omega}_{*-2s+1}^{Z_2^{k-1}}(F)(F_{Z_2}(X)/F_{Z_2}(A) \wedge T(\det \gamma_{2s})).$$

By Lemma 5.3 and induction hypothesis, this implies that $\Omega_*^{Z_2 k}(F, F_e)(X, A) \otimes R_2$ is a free $\Omega_* \otimes R_2$ module on even [odd] dimensional generators.

Now consider the exact triangle

Note that it is in fact a split short exact sequence. This gives the induction step. \square Note. If $(X, A) = (pt, \emptyset)$, Theorem 5.4 says that $\Omega_*^{Z_2 k} \otimes R_2$ is a free $\Omega_* \otimes R_2$ module on even dimensional generators.

Note. This is the best possible result in the following sense. In [3, p. 105] P. E. Conner computes the torsion of $\Omega^{\mathbb{Z}_2}_*$. There is too much torsion for $\Omega^{\mathbb{Z}_2}_*$ to be a free Ω_* module.

Note. In the paper as originally submitted the author asserted that $\Omega^G_* \otimes R_2$ is a free $\Omega_* \otimes R_2$ module for G any finite cyclic group. However, the

referee kindly noted a logical error in the author's proof of this statement. None-theless it is still a very reasonable conjecture, and in fact seems to be true in certain special cases (e.g. $Z_2 \times Z_p$). Along this line it should also be noted that in the author's dissertation [13] he proves via a somewhat arduous and noninstructive argument that for G a finite cyclic group the torison of Ω^G_* is all 2-torsion.

BIBLIOGR APHY

- M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200-208. MR 23 #A4150.
- 2. ——, K-theory, Lecture notes by D. W. Anderson, Benjamin, New York, 1967. MR 36 #7130.
- 3. P. E. Conner, Lectures on the action of a finite group, Lecture Notes in Math., no. 73, Springer-Verlag, Berlin and New York, 1968. MR 41 #2670.
- 4. P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Ergebnisse der Math. und ihrer Grenzgebiete, Band 33, Academic Press, New York; Springer-Verlag, Berlin, 1964. MR 31 #750.
- 5. E. E. Floyd, *Periodic maps via Smith theory*, Seminar on Transformation Groups, Ann. of Math. Studies, no. 46, Princeton Univ. Press, Princeton, N. J., 1960, Chap. III.
- 6. K. Komiya, Oriented bordism and involutions, Osaka J. Math. 9 (1972), 165-181. MR 46 #6341.
- 7. P. S. Landweber, Equivariant bordism and cyclic groups, Proc. Amer. Math. Soc. 31 (1972), 564-570. MR 45 #6028.
- E. Ossa, Unitary bordism of abelian groups, Proc. Amer. Math. Soc. 33 (1972).
 568-571. MR 45 #2743.
- 9. H. L. Rosenzweig, Bordism of involutions on manifolds, Illinois J. Math. 16 (1972), 1-10. MR 44 #7568.
- 10. R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago, Ill., 1970, pp. 291-316. MR 42 #8521.
- 11. ——, Notes on cobordism theory, Mathematical Notes, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1968. MR 40 #2108.
- 12. ———, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc. No. 103 (1970). MR 42 #8522.
- 13. E. R. Wheeler, The oriented bordism of cyclic, group actions, Dissertation, University of Virginia, Charlottesville, Va., 1973.

DEPARTMENT OF MATHEMATICS, NORTHERN KENTUCKY STATE COLLEGE, HIGHLAND HEIGHTS, KENTUCKY 41076